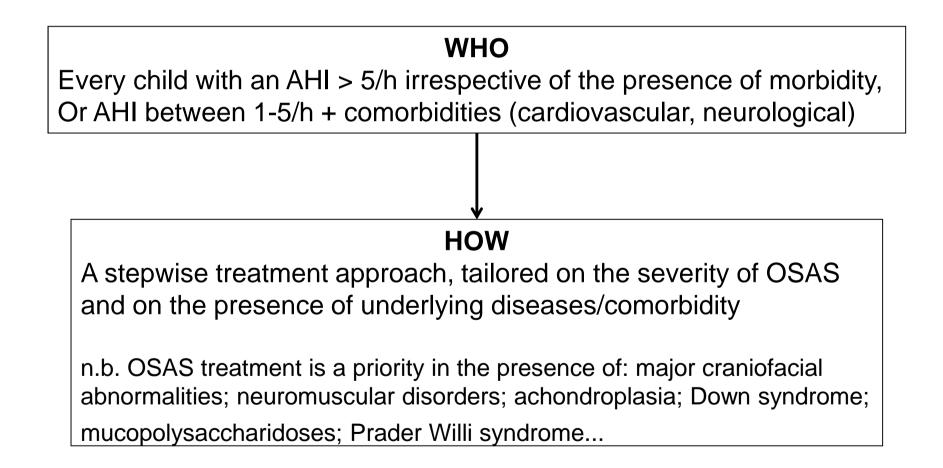
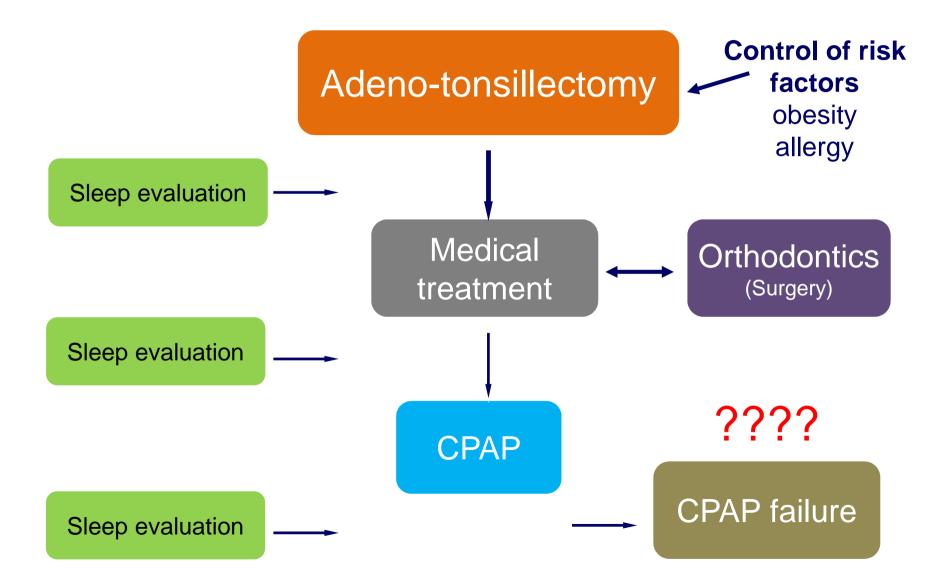


2nd INTERNATIONAL PEDIATRIC NONINVASIVE VENTILATION CONFERENCE November 3rd & 4th 2016

High flow nasal cannula for OSAS

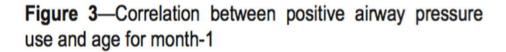
Alessandro Amaddeo Pediatric noninvasive ventilation and sleep unit Research unit INSERM U 955 Necker university Hospital, Paris, France

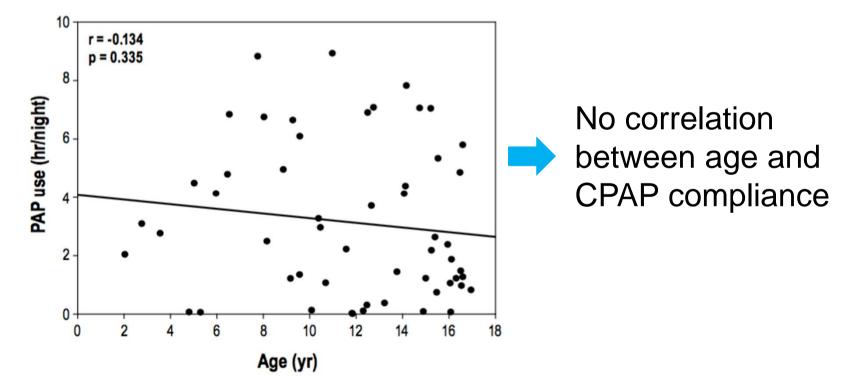



High flow nasal cannula for OSAS in children

Why should we use it? How does it work? Does it work in OSAS?

Treatment of pediatric OSAS




Stepwise treatment approach

Sure Therapy Adherence in ctive Study M. ¹ ; Laurie R. Karamessinis ¹ ; Mary Anne Cornaglia ¹ ; Ph.D. ³ ; Heidi Beris, B.S.N. ¹ ; Mary Kate Menello, B.S.N. ¹ ; F.A.S.M. ¹ Journal of Clinical Sleep Medicine, Vol. 8, No. 3, 2012	{	ŝ	12 ± 4 2-16	38 (68)	33 (59) 20 (36) 3 (5)	5 (9)	40 (71)		11 (20)	6 (11)	3 (5)	1 (2)	13 (23)
Predictors of Positive Airway Pressure Therapy Adherence in Children: A Prospective Study Natalie DiFeo'; Lisa J. Meltzer, Ph.D. ² ; Suzanne E. Beck, M.D., F.A.A.S.M. ¹ ; Laurie R. Karamessinis ¹ ; Mary Anne Cornaglia ¹ ; Joel Traylor ¹ ; John Samuel ¹ ; Paul R. Gallagher, M.A. ³ ; Jerilynn Radcliffe, Ph.D. ³ ; Heidi Beris, B.S.N. ¹ ; Mary Kate Menello, B.S.N. ¹ ; Carole L. Marcus, M.B.B.Ch., F.A.S.M. ¹ Journal of Clinical Sleep Medicine, Vol. 8, J	Table 2—Study group	z	Age (yr) Range	Males	Race African American Caucasian More than one race	Hispanic ethnicity	Obese ^a	Other diagnoses ^a	Genetic syndrome	Central nervous system abnormality	Craniofacial syndrome	Growth hormone deficiency	Neurodevelopmental disability ^a

Low compliance ! mean CPAP use $3 \pm 3h/night$

The correlation between mean nightly positive airway pressure (PAP) use and age is shown for month-1. There was no significant correlation.

Factors influencing CPAP compliance

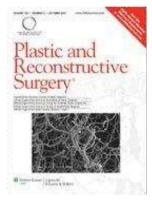
Table 3—Multiple linear regression model results, controlling for positive airway pressure mode (mode forced into the model at step 1)

Independent variable	Unstandardized β coefficient	SE	β coefficient p value	Change in R ²	p-value for change in R ²	Overall R ²	Overall p value
Outcome = Nights Used, Month	1						
Constant	-3.157	7.507	0.676			-	-
PAP mode	1.859	2.479	0.457	0.006	0.585	-	-
Maternal education	3.480	1.026	0.001	0.197	0.001	0.203	0.005
Outcome = Nights Used, Month	3						
Constant	-4.367	6.289	0.491			-	-
PAP mode	-1.412	2.690	0.602	0.006	0.597	-	-
MOSS	5.466	1.399	< 0.0005	0.252	< 0.0005	0.258	0.001
Outcome = Mean Nightly Use (h	ours/night), Month 1						
Constant	2.442	0.490	< 0.0005			-	-
PAP mode	-0.066	0.840	0.938	0.001	0.831	-	-
Raceª	1.943	0.732	0.011	0.130	0.011	0.131	0.037
Outcome = Mean Nightly Use (h	ours/night), Month 3						
Constant	2.707	0.470	< 0.0005			-	-
PAP mode	-1.229	0.870	0.165	0.030	0.240	-	-
Developmental delay ^b	2.401	0.927	0.013	0.126	0.013	0.156	0.022

The unstandardized regression coefficient (β), standard error (SE) of the coefficient, p value of the coefficient, change in R² and its p-value as a result of the addition of the new predictor, overall R² for the entire model and overall p value for the model are shown for each adherence outcome. Note that the unstandardized regression coefficient (β) reflects the change in the outcome per unit change in the predictor variable. PAP, positive airway pressure. ^aCoded 0 = African American, 1 = other. ^bCoded 0 = No, 1 = Yes. Sleep Medicine 14 (2013) 1290-1294

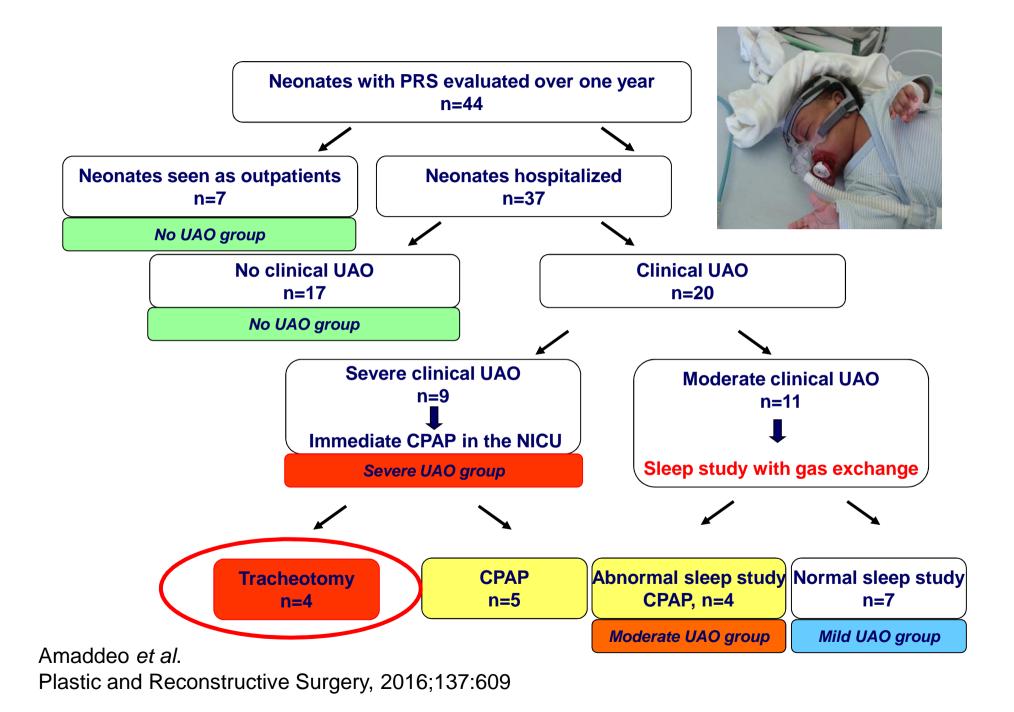
Original Article

Continuous positive airway pressure and noninvasive ventilation adherence in children


Adriana Ramirez ^{a,b}, Sonia Khirani ^{b,c}, Sabrina Aloui ^b, Vincent Delord ^d, Jean-Christian Borel ^{e,f}, Jean-Louis Pépin ^{f,g}, Brigitte Fauroux ^{b,h,i,*}

	Total population (N = 62)	Nasal mask (n = 38)	Facial mask $(n = 14)$	Nasal cannula $(n = 10)$	P value
Underlying disease (n, %) OSA Lung disease Neuromuscular disease Gender (female/male) Age (y) Weight (kg)	51 (82%) 5 (8%) 6 (10%) 26/36 10.0 ± 4.7 31.0 ± 21.0	33 4 1 12/26 7.6 ± 4.0 [§] 25.6 ± 20.5 [§]	14 0 0 9/5 11.8 ± 4.6 41.9 ± 16.5	4 1 5 5/5 15.0±3.0 47.0±13.4	<.001 <.001
CPAP and NIV adherence over the last month Average use per night (h:min) Number of patients using treatment >8 h/night $(n, %)$ Average nights use (n)	8:17 ± 2:30 45 (72%) 26 ± 5	8:17±2:16 25 (65%) 27±4	8:12 ± 3:17 12 (86%) 23 ± 8	8:23 ± 2:44 8 (80%) 28 ± 7	.858 .183 .122
Nocturnal gas exchange with CFAP OF NIV Mean SpO ₂ (%) Minimal SpO ₂ (%) % of night time with a SpO ₂ <90% (%) 4% Desaturation index (events/h) Mean PtcCO ₂ (mmHg) Maximal PtcCO ₂ (mmHg) Percent of night time with a PtcCO ₂ >50 mmHg (%)	97 ± 2 91 ± 2 0.3 ± 1.3 4 ± 5 39 ± 5 45 ± 5 1.4 ± 6.3	97 ± 2 91 ± 4 0.5 ± 1.7 5 ± 7 39 ± 5 45 ± 5 0.4 ± 2.0	97 ± 3 92 ± 2 0.0 ± 0.0 3 ± 3 38 ± 3 42 ± 4 0.0 ± 0.0	97 ± 2 90 ± 4 0.0 ± 0.0 4 ± 3 41 ± 7 48 ± 5* 8.1 ± 15.2*	.985 .328 .233 .236 .270 .020 .016

Weaning of PPC/VNI 59 patients (25%) during 27 months

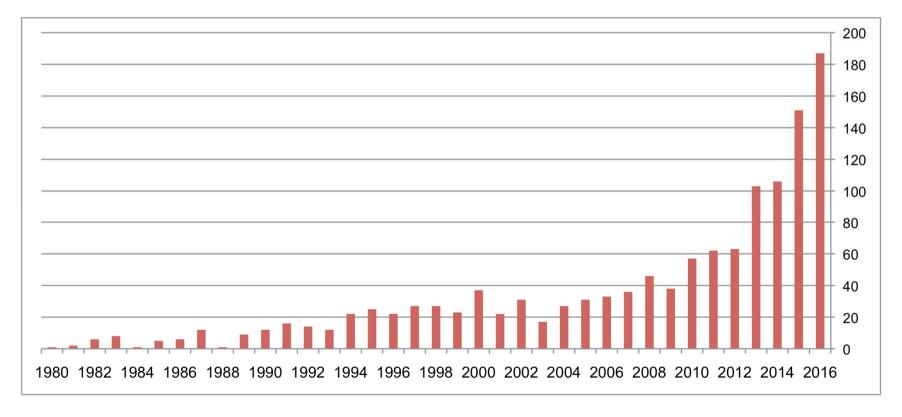

Age at CPAP/NIV initiation (median), yrs	1.4
CPAP / NIV	51 (86%) / 8 (14%)
Duration of CPAP / NIV (median), yrs	1 / 4
Diagnosis	Laryngeal disease8Prader Willi sd6Bronchopulmonary dysplasia6Treacher Collins6Pierre Robin sd5Polymalformative sd5Idiopathic OSA5Achondroplasia3Crouzon, Apert2Pycnodysostosis2Mucoplysaccharidosis2Goldenhar sd1Other6
Reason of withdrawal	Improvement 75%: spontaneous 2/3, after surgery 1/3 Non compliant, poor tolerance: 25%

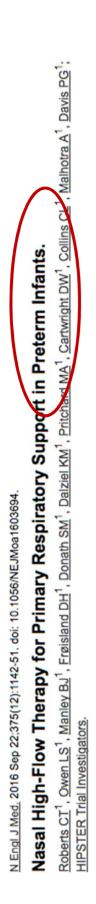
IDEAS AND INNOVATIONS

Continuous Positive Airway Pressure for Upper Airway Obstruction in Infants with Pierre Robin Sequence

Amaddeo et al. Plastic and Reconstructive Surgery, 2016;137:609

Limitations of CPAP


- CPAP is an effective treatment for OSAS but:
 - patients do not tolerate (interface...
 - patients are not compliant: intellectual disability, default of family structure...
 - patients may have too severe OSAS: CPAP dependance > ~ 18/24h
- Therapeutic options ?
 - Surgery: tracheostomy, mandibular distraction...
 - Tolerate OSAS despite associated morbidity
 - ... High Flow ?


High flow nasal cannula for OSAS in children

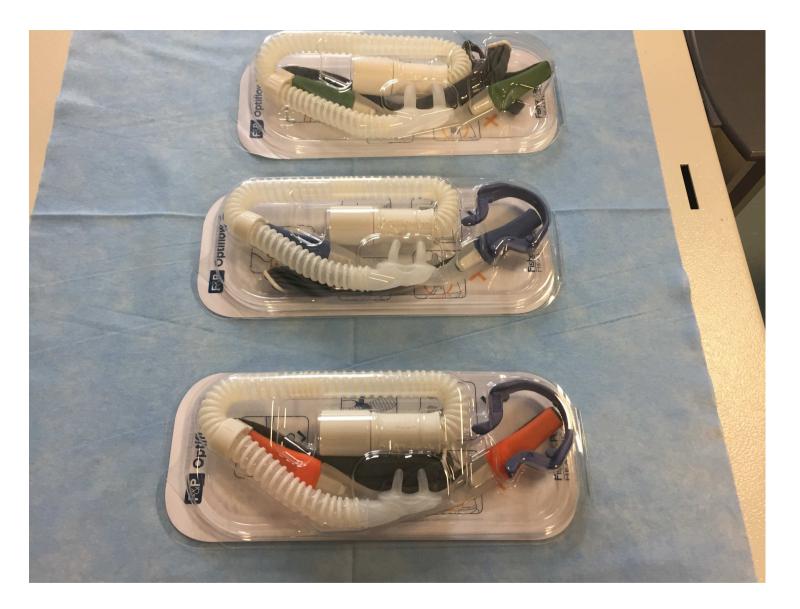
Why should we use it? How does it work? Does it work in OSAS?

High flow nasal cannula: a growing (hot) topic

Pubmed citations

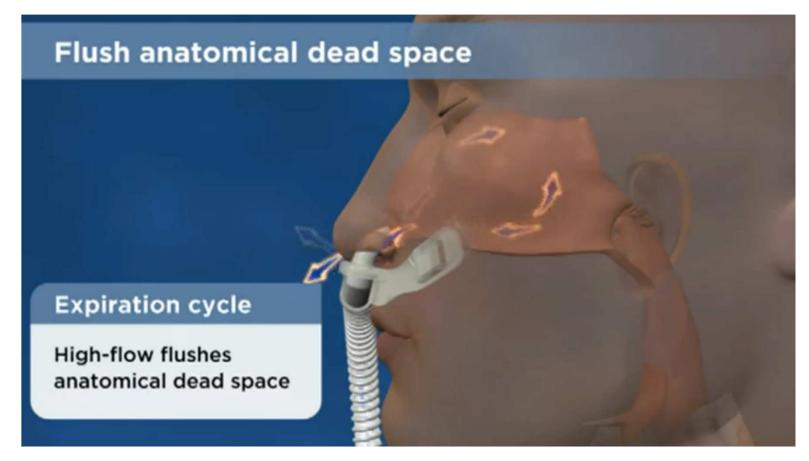
High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2016 Feb 22;2:CD006405. doi: 10.1002/14651858. CD006405.pub3 Wilkinson D¹, Andersen C, O'Donnell CP, De Paoli AG, Manley BJ.

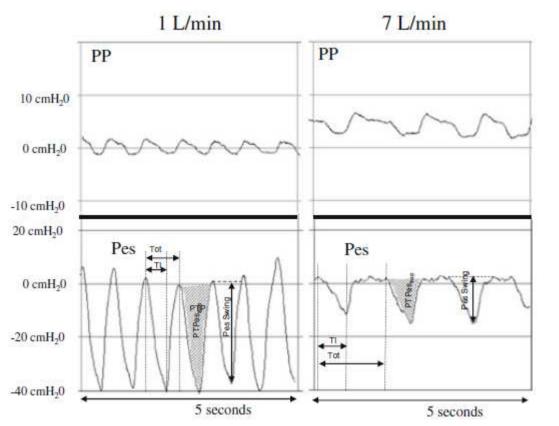
N Engl J Med. 2015 Jun 4;372(23):2185-96. doi: 10.1056/NEJMoa1503326. Epub 2015 May 17.


High-flow oxygen through nasal cannulatin acute hypoxemic respiratory failure.

Chakarian JC, Ricard JD, Wittebole X, Chevalier S, Herbland A, Fartoukh M, Constantin JM, Tonnelier JM, Pierrot M, Mathonnet A, Béduneau G, Delétage-Frat JP¹, Thille AW, Mercat A, Girault C, Ragot S, Perbet S, Prat G, boulain T, Morawiec E, Cottereau A, Devaguet J, Nseir S, Razazi K, Mira JP, Argaud L, Métreau C, Richard JC, Brochard L, Robert R; ELORALI Study Group; REVA Network

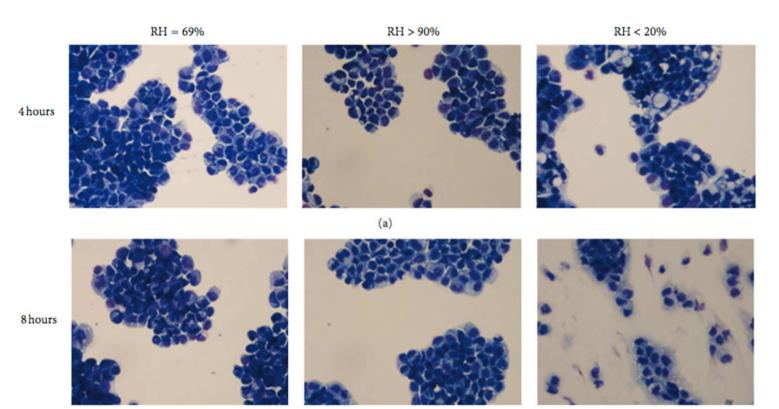
High flow nasal cannula for OSAS



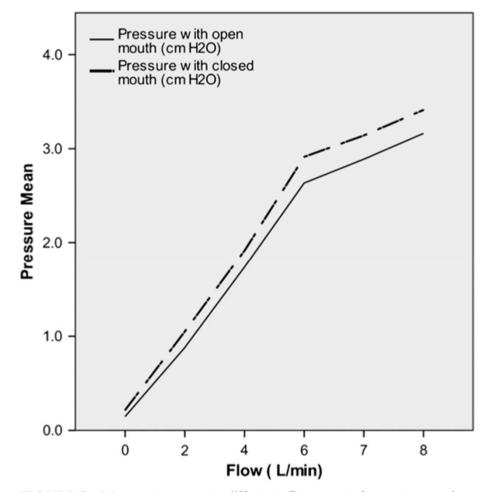

Μ

S

Washout of nasopharyngeal and intrapulmonary dead space through continual gas removal during expiration (enhance CO₂ removal) Nahum Resp Care Clinic 2002



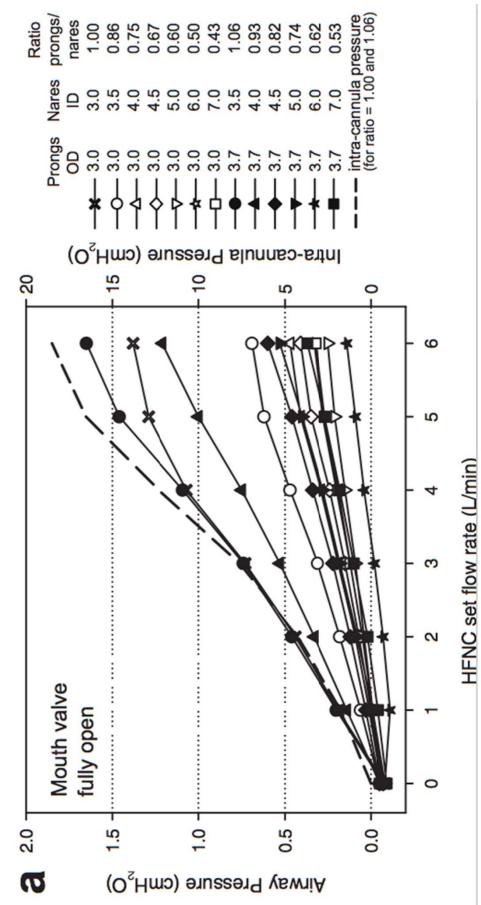
Reduction of inspiratory resistance (work of breathing) BE de Jongh, J Perinatol. 2014; Pham TM, Pediatr Pulmonol. 2014

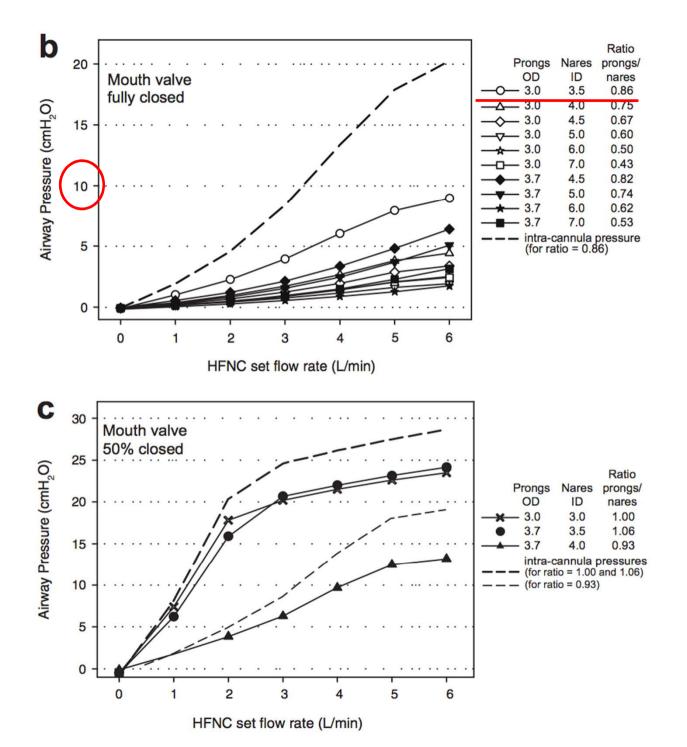


Improve mucociliary clearance (by providing warm and humidified gas) Chidekel et al, Pulm Med 2012

Provide support pressure Arora B, Pediatr Emerg Care

Nasopharyngeal Airway Pressures in Bronchiolitis Patients Treated With High-Flow Nasal Cannula Oxygen Therapy

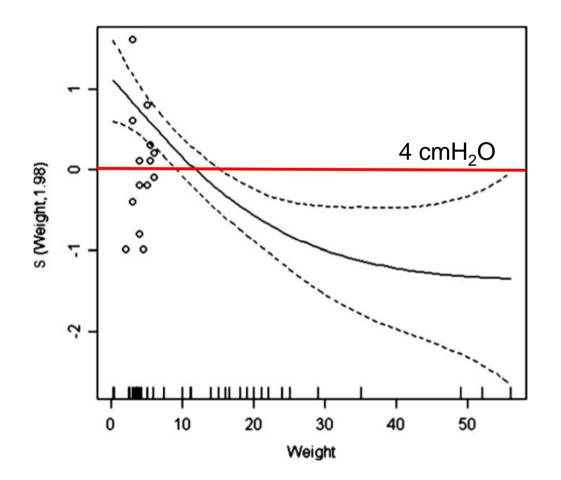

Bhawana Arora, MD,* Prashant Mahajan, MD, MPH, MBA,*† Marwan A. Zidan, PhD,‡ and Usha Sethuraman, MD† Pediatric Emergency Care • Volume 28, Number 11, November 2012


FIGURE 3. Mean pressure at different flow rates for open- and closed-mouth states.

Effect of HFNC Flow Rate, Cannula Size, and Nares **Diameter on Generated Airway Pressures:** An In Vitro Study

Emidio M. Sivieri, _{MS.E},^{1,2} Jeffrey S. Gerdes, _{MD},^{1,2,3} and Soraya Abbasi, _{MD}^{1,2,3}*

Pediatric Pulmonology 48:506–514 (2013)



When mouth leaks are reduced a prongs/nares > 0.9 may dramatically increase the delivered pressure

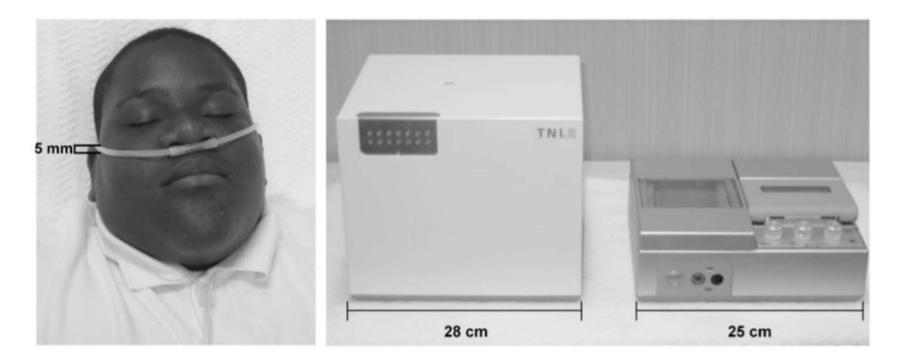
Children With Respiratory Distress Treated With High-Flow Nasal Cannula

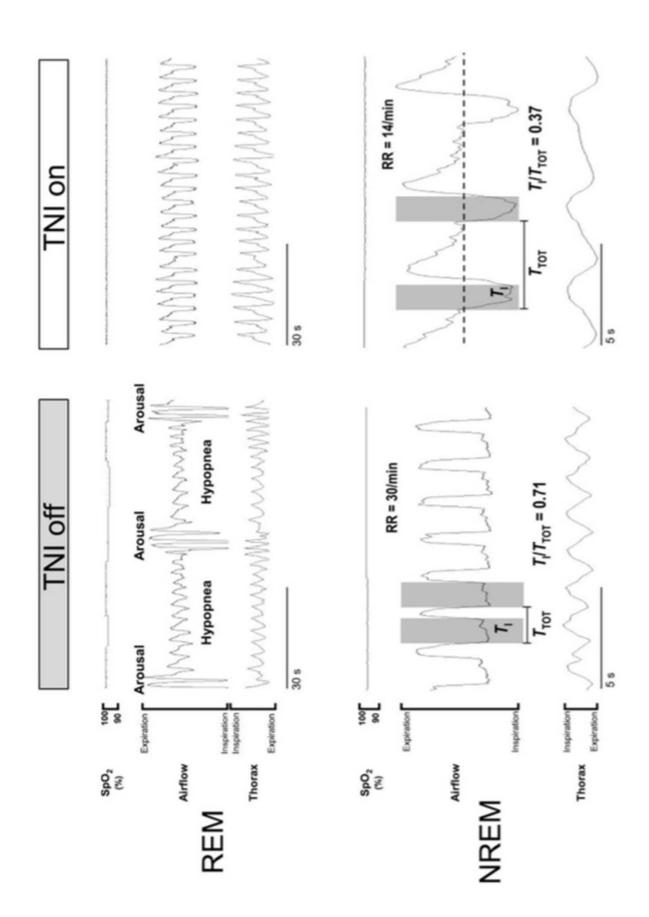
Thomas Spentzas, MD, MSc, Milan Minarik, MD, Andrea B. Patters, Brett Vinson, CRT, LRCP, and Greg Stidham, MD

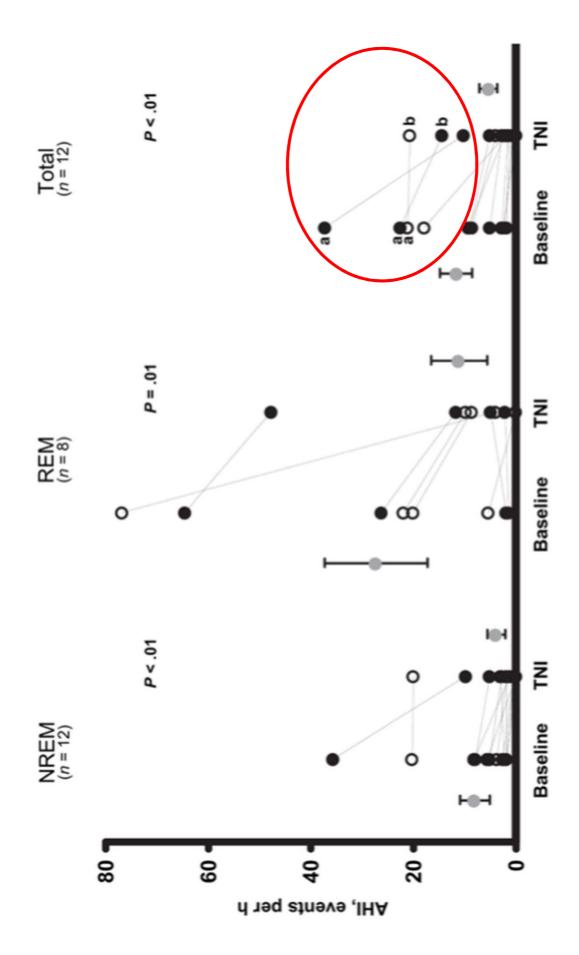
Journal of Intensive Care Medicine / Vol. 24, No. 5, September/October 2009

End expiratory airway pressure changes during HFNC from the mean airway pressure (4 \pm 1.9 cmH₂O)

All patients had a positive end-expiratory pressure, with a direct relation between weight and pressure drop

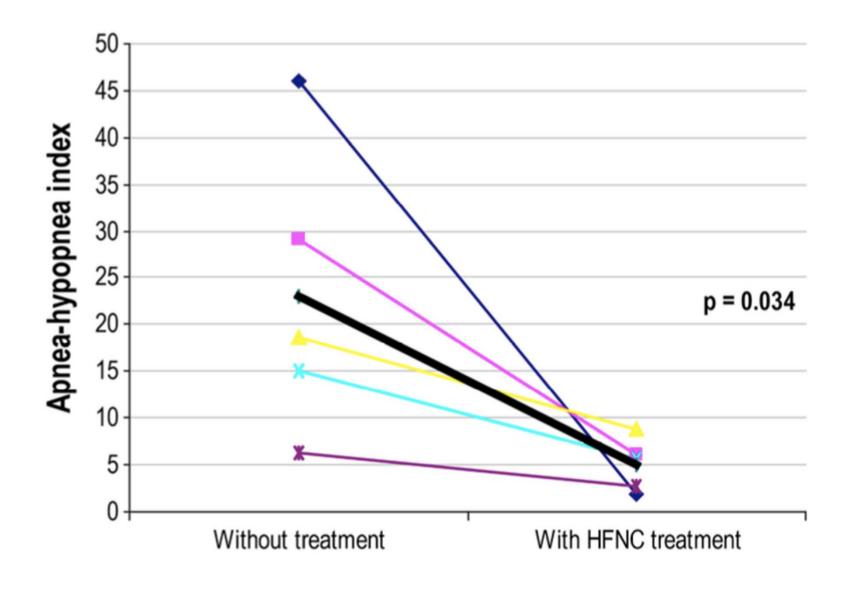

High flow nasal cannula for OSAS in children


Why should we use it? How does it work? Does it work in OSAS?


Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children

Brian McGinley, MD^a, Ann Halbower, MD^b, Alan R. Schwartz, MD^c, Philip L. Smith, MD^c, Susheel P. Patil, MD, PhD^c, and Hartmut Schneider, MD, PhD^c *Pediatrics*. 2009 July ; 124(1): 179–188. doi:10.1542/peds.2008-2824.

12 children, age 10 ± 2 years, with OSAS + mean BMI of 35 ± 14 kg/m² One night titration study with a high flow cannula system


High-Flow Nasal Cannula Therapy for Obstructive Sleep Apnea in Children

Leon Joseph, MB ChB; Shmuel Goldberg, MD; Michal Shitrit; Elie Picard, MD

Journal of Clinical Sleep Medicine, Vol. 11, No. 9, 2015

5 patients with OSAS who did not tolerate CPAP:

- 1. Prematurity, bronchopulmonary dysplasia, age 22 months
- 2. Severe psychomotor retardation, age 15 yrs
- 3. Polymalformatif syndrome, age 3 yrs
- 4. Hypotonia, retrognatia, age 2 yrs
- 5. Treacher Collins, decanulation after mandibular distraction, age 3 yrs

→ No data about objective adherence

High flow nasal cannula for OSAS: Necker protocol

Population

- children aged 0 to 18 yrs with OSAS defined by:
 - AHI>10/hour and/or
 - oxygen desaturation index > 15/hour and/or
 - minimal SpO₂ <90% and/or
 - maximal $PtcCO_2 > 50 mmHg$
- non compliant with an optimal CPAP therapy defined by a use < 2 hours/night, after at least 2 weeks of CPAP trial

High flow nasal cannula for OSAS: Necker protocol

Primary endpoint

 objective compliance (number of hours use / night) evaluated on the device after one month as the mean of the device usage time during the 4th week of use (sole option)

Secondary endpoints

- objective compliance after one week as the mean of the device usage time
- correction of OSAS on PG with HF

High flow nasal cannula for OSAS: Necker protocol

Procedure - 1

- High Flow is delivered by the myAIRVO device from Fisher Paykel with appropriate nasal cannula
- The highest tolerable flow and the largest cannula tolerated by the patient are chosen (in order to reach the highest pressure)

High flow nasal cannula for OSAS: our protocol

Procedure - 2

- HF is initiated during a 2 hours outpatient consultation or during hospitalisation
- A control visit is organized 1 week after initiation
- A respiratory polygraphy is performed between 1-3 months after initiation, when the patient tolerates the HFN for at least 6h/night.

High flow nasal cannula for OSAS: Necker experience

	Age (yrs)	Disease	AHI (n/h)	AHI with HFNC (n/h)	Flow (I/min)	Treatment adherence (h/night)
Patient 1	0.1	Pierre Robin sequence	14	6	10	6.8
Patient 2	1.8	Down syndrome	11	1	15	7.5
Patient 3*	6.4	Pfeiffer syndrome	13	0.5	10	6.5
Patient 4	7.6	Down syndrome	64	awaiting control PG	20	
Patient 5	9.2	Down syndrome	8.6	0.5	20	6.8
Patient 6	12	Down syndrome	46		20	failure
Patient 7	16.2	Down syndrome	26	awaiting control PG	20	
Patient 8	16.8	Down syndrome	10		20	failure

2 patients with developmental delay and behavior problems did not tolerate HF

* Patient 3 was tracheostomised after developing tracheal stenosis following neurosurgical intervention

Conclusion - 1

- HF seems to be efficient in mild to moderate OSAS in children
- HF may be better tolerated than CPAP, and could represent an alternative to CPAP in non compliant patients
- Future studies
 - patient selection ?
 - optimal flow rate ?

Conclusion - 2

- Limitations of HF
 - no pressure monitoring: risk of high pressure when use with large cannula
 - no battery, alarms (security risk) and no in-built software