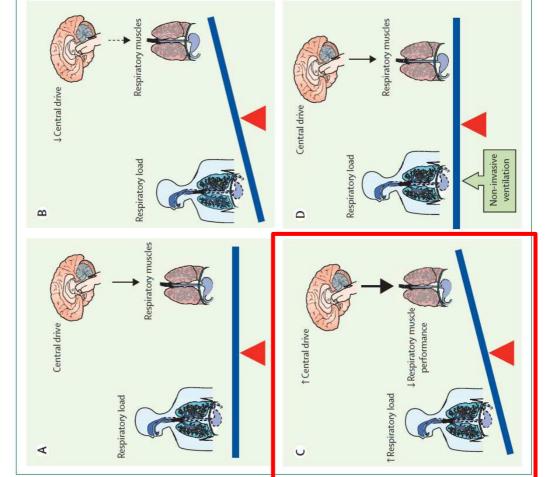


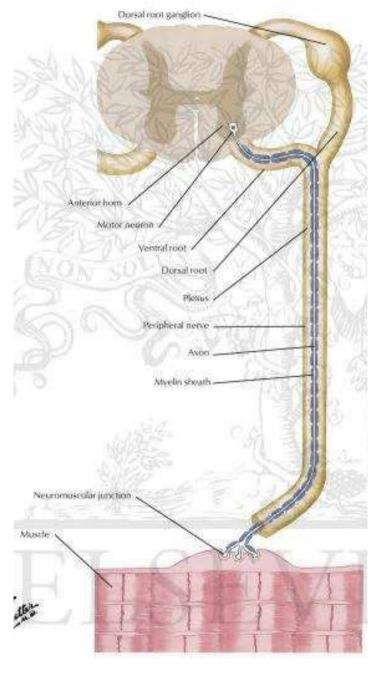
Is there an optimal ventilatory mode for neuromuscular children ?

Brigitte Fauroux & Alessandro Amaddeo Pediatric noninvasive ventilation and sleep unit Research unit INSERM U 955 Necker university Hospital, Paris, France

Is there an optimal ventilatory mode for neuromuscular children ?


Introduction

- Ventilatory modes
- In practice
- Conclusion



Alessandro Amaddeo, Annick Frapin, Brigitte Fauroux

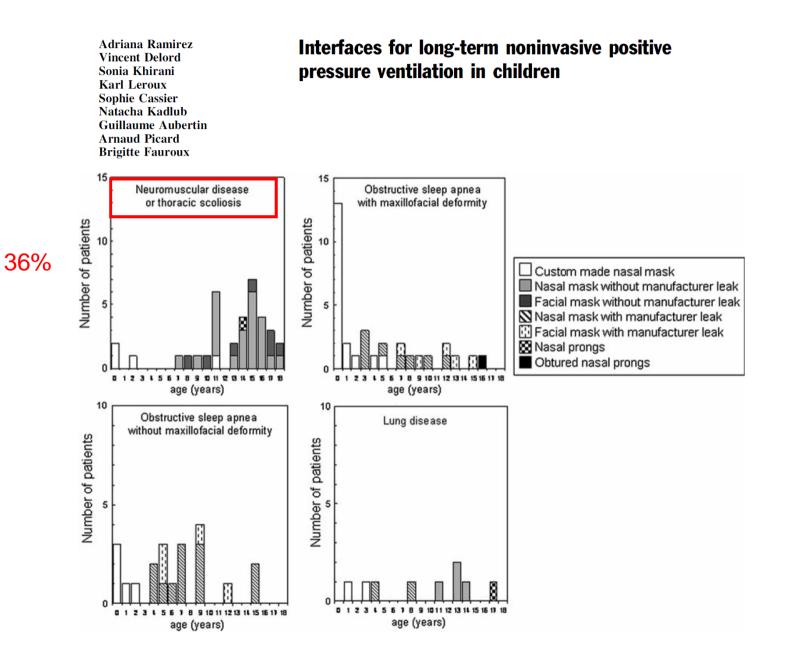
www.thelancet.com/respiratory Published online July 13, 2016 http://dx.doi.org/10.1016/S2213-2600(16)30151-5

Heterogeneity of neuromuscular disorders in children

Motoneuron - SMA

Peripheral nerve

- Metabolic
- Hereditary


Neuromuscular junction

- Myasthenia

Muscle

- DMD, myotonic D.
- Cong. myopathies

PEDIATRIC ORIGINAL

Long-term ventilation in children: longitudinal trends and outcomes

Catherine M McDougall,¹ Robert J Adderley,² David F Wensley,^{1,2} Michael D Seear^{1,2}

	Number of patients (% o	f total)	
	1995–1999	2000-2004	2005-2009
	(n=17)	(n=53)	(n=74)
Mode of support			
Tracheostomy ventilation	6 (35)	9 (17)	13 (18)
Non-invasive CPAP	0 (0)	5 (9)	17 (23)
Non-invasive bilevel support	11 (65)	39 (74)	44 (59)
Time dependent on ventilation			
24 h/d	2 (12)	6 (11)	9 (12)
<24 h/d	15 (88)	47 (89)	65 (88)
Diagnostic category			
Neuromuscular disease	11 (64)	30 (57)	26 (35)
Spinal injury	1 (6)	3 (6)	5 (7)
Abnormal ventilatory control	1 (6)	7 (13)	11 (15)
Airway malacia	2 (12)	3 (6)	6 (8)
Craniofacial/OSA	1 (6)	6 (11)	16 (22)
Other	1 (6)	4 (7)	10 (13)
Trigger for initiation of LTV*			
Failure to wean from ventilation	5 (29)	5 (10)	<mark>18 (</mark> 25)
Acute illness	6 (35)	9 (17)	16 (22)
Sleep study results	2 (12)	14 (26)	24 (33)
Symptoms of sleep-disordered breathing	3 (18)	13 (26)	7 (10)
FVC<20%	0 (0)	7 (13)	2 (3)
Other	1 (6)	4 (8)	5 (7)

Table 1	Details of long-term	ventilation (LTV)	natients by enoch	of initiation of ITV

McDougall et al. Arch Dis Childh 2013;98:660

NIV for children with NMD in Rome

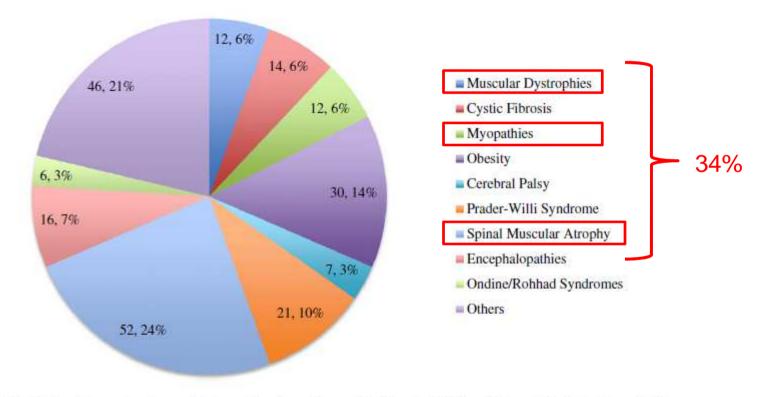


Fig. 1. Indications for non-invasive ventilation: authors' experience at Bambino Gesù Children's Research Institute (Rome, Italy).

Pavone et al. Early Human Development 2013;89:S25

Is there an optimal ventilatory mode for neuromuscular children ?

- Introduction
- Ventilatory modes
 - principles
 - efficacy
- In practice
- Conclusion

	Volume targeted ventilation	Pressure targeted ventilation	Target volume with variable pressure support
Tidal volume	stable	variable	« guaranteed »
Pressure	variable	stable	variable (within targets)
Flow			
Avantages	known tidal volume	known IPAP leak compensation	control of IPAP leak compensation « guantanteed » tidal volume
Limitations	no leak compensation no control of IPAP	variable tidal volume	possibility to guarantee tidal volume

Paediatric Respiratory Reviews 18 (2016) 73-84

2

Contents lists available at ScienceDirect

Paediatric Respiratory Reviews

Review

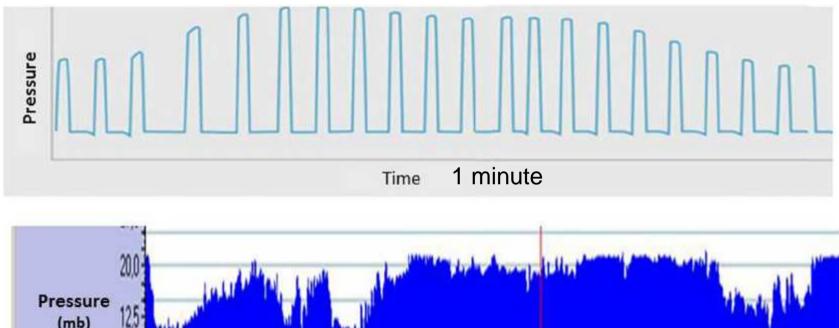
New modes in non-invasive ventilation

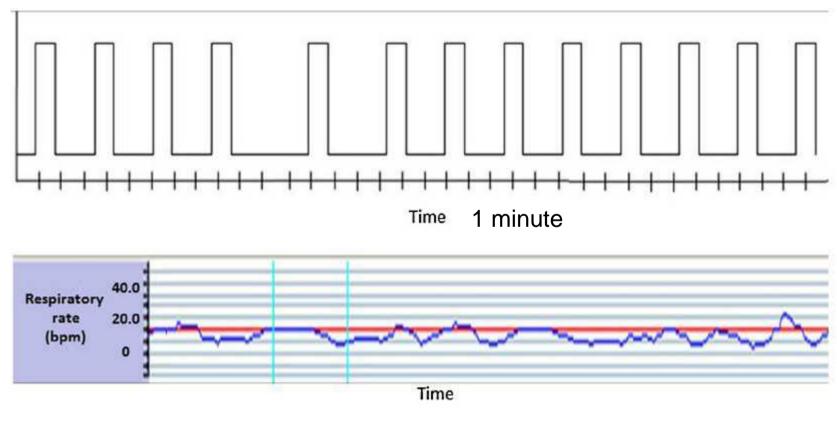
Claudio Rabec ^{1,2,*}, Guillaume Emeriaud ³, Alessandro Amadeo ^{4,5,6}, Brigitte Fauroux ^{4,5,6}, Marjolaine Georges ^{1,2}

	Characteristics	Brands
Target volume with variable pressure support	Automatically adjust IPAP level (in a predefined pressure rang) to achieve a stable predetermined target Vt	AVAPS TM (A40 TM , Trilogy 100 TM and 200 TM <i>Philips</i>) Target volume pressure support (Vivo TM 50 and 60, <i>Breas</i> ; Ventilogic TM , <i>Weinmann</i> , Monnal T50 TM , ALMS; Elysee TM 150, 250, 350, <i>Resmed</i>)
Target volume with both variable pressure support and back-up respiratory rate	Automatically adjust both IPAP and BURR level (in a predefined pressure rang) to achieve a stable target predetermined minute ventilation	IVAPS TM (VPAP S9 TM , Stellar TM 100 and 150, Lumis TM Astral TM , <i>Resmed</i>)

Target volume pressure support

IVAPS


ResMed

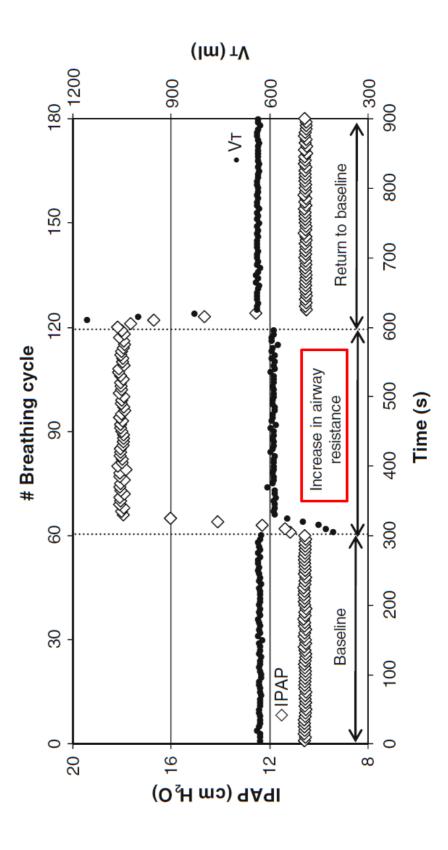

Target volume with variable pressure support

Entire night

Target volume with variable pressure support and back up rate

Entire night

Is there an optimal ventilatory mode for neuromuscular children ?

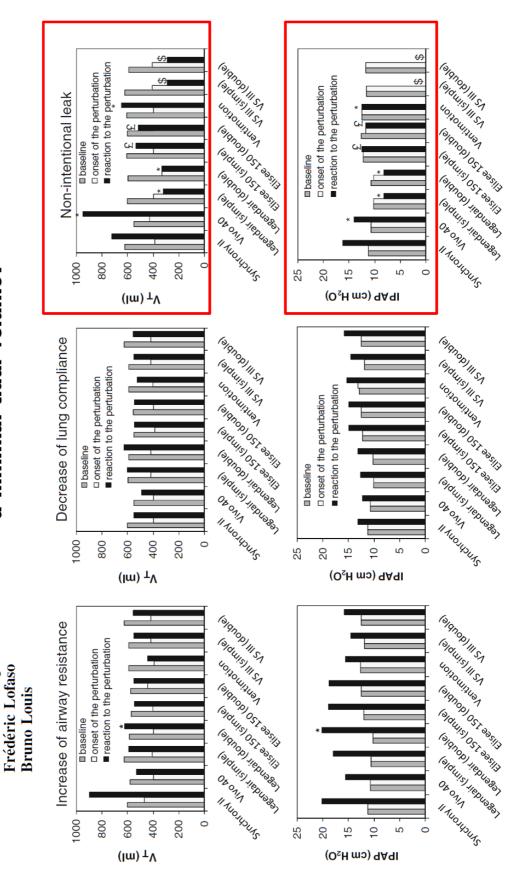

- Introduction
- Ventilatory modes
 - principles
 - efficacy
- In practice
- Conclusion

Intensive Care Med (2010) 36:1008–1014 DOI 10.1007/s00134-010-1785-9

ORIGINAL

Brigitte Fauroux Karl Leroux Jean-Louis Pépin Frédéric Lofaso Bruno Louis

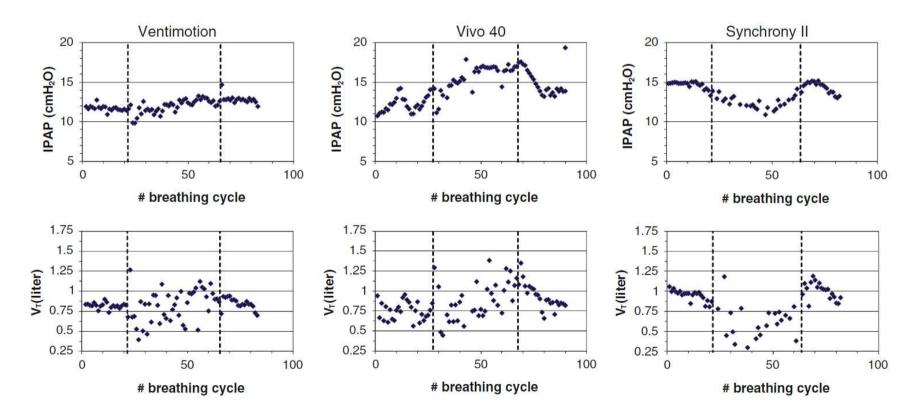
Are home ventilators able to guarantee a minimal tidal volume?



Jean-Louis Pépin

Brigitte Fauroux

Karl Leroux



ORIGINAL

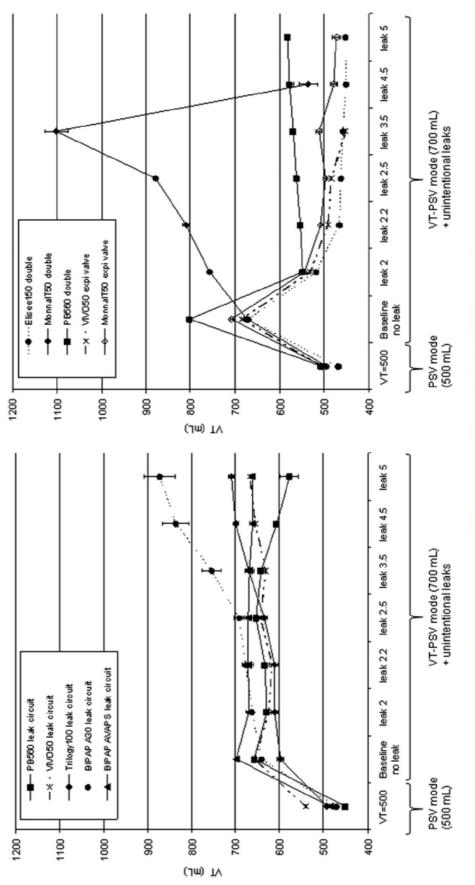
Brigitte Fauroux Karl Leroux Jean-Louis Pépin Frédéric Lofaso Bruno Louis

Are home ventilators able to guarantee a minimal tidal volume?

Evolution of IPAP and VT during mouth leaks

lume	
unintentional leaks during volume	ation
ks dur	/entil
al lea	port <
ntion	e sup
Inintel	pressure support ventilation
of	
Harms	targeted

Sonia Khirani ^{a,b,c}, Bruno Louis ^{c,d,e}, Karl Leroux ^f, Vincent Delord ^b, Brigitte Fauroux ^{b,c}, Frédéric Lofaso ^{c,d,e,g,h,*}


circuits.
and
settings
Ventilatory
Table 1

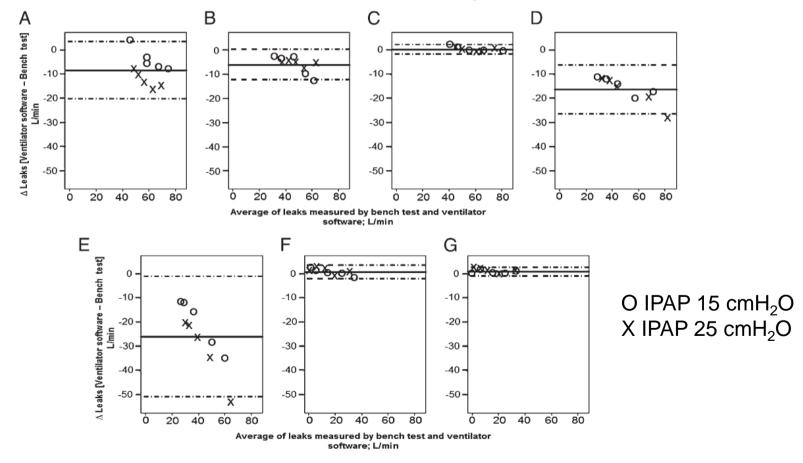
	Mode	Circuit	IPAPmin	IPAPmin IPAPmax PEEP	PEEP	Ŀ	⊨	TRIG I	TRIG E	Slope
			(cmH_2O)	(cmH_2O)	(cmH ₂ O) (cmH ₂ O) (cmH ₂ O) (b/min) (s)	(h/min)	(s)	(L/min)		
ELISEE 150 (ResMed SA,	AI VS	D	10		4	15	1.3	5	25%	-
Saint Priest, France)										
MONNAL T50 (Air Liquide,	AI VS	S	10	34	4	15	1.3	10	30%	-
Antony, France)	AI VS	D	10	34	4	15	1.3	10	30%	-
PB560 (COVIDIEN Courtaboeuf,	AI FR	D	10	30	4	15	1	5	35%	-
France)	AI FR	S + leak	10	30	4	15	T	5	35%	-
VIVO 50 (Breas Medical	VS-Vtcibl	S	10	20	4	15	1.3	6	9 L/min	-
Saint Priest, France)	VS-Vtcibl	S + leak	11	20	4	15	1.3	6	9 L/min	-
TRILOGY 100 (Respironics France	ST-AVAPS	S + leak	10	34	4	15	1.3	6	30%	-
Carquefou, France) BIPAP A30 (Resnironics France	ST-AVAPS	ST-AVAPS S + leak	10	75	4	15	۲ ۲	Auto	Auto	-
Carquefou, France)		2	!							
BIPAP AVAPS (Respironics France ST-AVAPS S + leak	ST-AVAPS	S + leak	10	25	4	15	1.3	1.3 Auto	Auto	-
Carquefou, France)										

Respiratory Medicine (2013) 107, 1021-1029

Harms of unintentional leaks during volume targeted pressure support ventilation

Sonia Khirani ^{a,b,c}, Bruno Louis ^{c,d,e}, Karl Leroux ^f, Vincent Delord ^b, Brigitte Fauroux ^{b,c}, Frédéric Lofaso ^{c,d,e,g,h,*}

Respiratory Medicine (2013) 107, 1021-1029

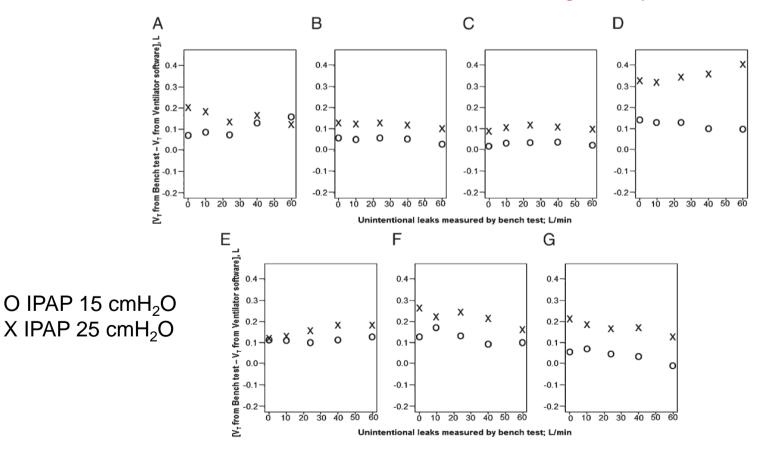

Monitoring of Noninvasive Ventilation by Built-in Software of Home Bilevel Ventilators

A Bench Study

CHEST 2012; 141(2):469-476

Olivier Contal, MS PT; Laurence Vignaux, MS PT; Christophe Combescure, PhD; Jean-Louis Pepin, MD, PhD; Philippe Jolliet, MD; and Jean-Paul Janssens, MD

Difference in leaks calculated on the bench and given by the in-built software


Monitoring of Noninvasive Ventilation by Built-in Software of Home Bilevel Ventilators

A Bench Study

CHEST 2012; 141(2):469-476

Olivier Contal, MS PT; Laurence Vignaux, MS PT; Christophe Combescure, PhD; Jean-Louis Pepin, MD, PhD; Philippe Jolliet, MD; and Jean-Paul Janssens, MD

Difference in tidal volume calculated on the bench and given by the in-built software

Pressure Support Versus Assisted Controlled Noninvasive Ventilation in Neuromuscular Disease

Karim Chadda,¹ Bernard Clair,¹ David Orlikowski,¹ Gilles Macadoux,¹ Jean Claude Raphael,¹ and Frédéric Lofaso^{1,2,*}

13 adults with NMD requiring NIV, 3 modes in a random order, duration 25 min

	SB	ACV	APCV	PSV	ANOVA, p
V _T , L	0.31 ± 0.12	0.71 ± 0.20^{a}	0.74 ± 0.29^{a}	0.77 ± 0.23^{a}	< 0.0001
RR, breaths/minute	21 ± 6	17 ± 2	16 ± 3	13 ± 3^{a}	< 0.0001
V _{E'} L/minute	6.0 ± 1.8	12.2 ± 3.3^{a}	11.8 ± 5.0^{a}	9.7 ± 1.8	< 0.0001
T _I , s	1.42 ± 0.45	1.37 ± 0.24	1.41 ± 0.28	1.64 ± 0.32	0.08
V _T /T _I , L/second	0.23 ± 0.06	0.54 ± 0.20^{a}	0.54 ± 0.26^a	0.48 ± 0.13^{a}	< 0.0001
Vi max, L/second	0.30 ± 0.10	0.59 ± 0.19	0.76 ± 0.24	0.83 ± 0.19^b	< 0.0001
PaCO ₂ , mmHg	51±8	43 ± 8	45 ± 13	43 ± 7	< 0.005
PaO ₂ , mmHg	74 ± 10	80 ± 11	84 ± 11	84 ± 12	< 0.005
pН	7.39 ± 0.05	7.43 ± 0.05	7.43 ± 0.06	7.44 ± 0.05	< 0.005

Arterial Blood Gas and Respiratory Parameters During SB, ACV, APVC, and PSV

Abbreviations: SB, spontaneous breathing; ACV, assisted controlled ventilation; APCV, assisted pressure-controlled ventilation; PSV, pressure-support ventilation; $V_{T'}$ inspiratory tidal volume; RR, respiratory rate; V_E , minute ventilation; $T_{I'}$ inspiratory time; $V_T/T_{I'}$ mean inspiratory flow; Vi max, maximal inspiratory flow.

Neurocritical Care

Volume 1, 2004

Original Article

Pressure Support Versus Assisted Controlled Noninvasive Ventilation in Neuromuscular Disease

Karim Chadda,¹ Bernard Clair,¹ David Orlikowski,¹ Gilles Macadoux,¹ Jean Claude Raphael,¹ and Frédéric Lofaso^{1,2,*}

Mech	Mechanical and Respiratory Effort Parameters During SB, ACV, APVC, and PSV	y Effort Parameters	During SB, ACV, A	PVC, and PSV	
	SB	ACV	APCV	PSV	ANOVA, p
PEEPI _{dvn} , cm H ₂ O	0.21 ± 0.19	0.23 ± 0.19	0.28 ± 0.16	0.23 ± 0.19	NS
$CL_{dvn'}L/cmH_2O$	0.088 ± 0.074	0.088 ± 0.041	0.088 ± 0.037	0.079 ± 0.047	NS
Swing Pes, cm H ₂ O	6.39 ± 2.10	1.54 ± 1.02^{a}	1.67 ± 1.00^{a}	2.10 ± 1.05^{a}	<0.0001
Swing Pdi, cm H ₂ O	7.52 ± 4.12	1.31 ± 1.01^{a}	1.36 ± 1.09^{a}	2.11 ± 1.11^{a}	<0.0001
PTPes, cm H ₂ O.s/minute	126 ± 35	54 ± 45^{a}	62 ± 65^{a}	70 ± 42^{a}	<0.0001
PTPdi, cm H ₂ O.s/minute	161 ± 74	59 ± 61^{a}	64 ± 52^{a}	66 ± 40^{a}	<0.0001
Cycle Triggering, %		4.5 ± 12.3	14.5 ± 29.4	33.6 ± 26.9^{b}	0.007
				Triggering %	
Patient no.	Patient choice	<ptpes< td=""><td>ACV</td><td>APCV</td><td>PSV</td></ptpes<>	ACV	APCV	PSV
1	PSV	APCV	10	06	50
2	PSV	ACV	0	0	20
ŝ	ACV	ACV	0	0	0
4	PSV	ACV	0	0	10
5	ACV	APCV	0	50	20
9	APCV	PSV	0	0	20
7	APCV	ACV	0	0	0
8	PSV	ACV	20	20	50
6	APCV	ACV	0	0	70
10	ACV	ACV	40	20	09
11	ACV	PSV	0	0	0
12	PSV	APCV	0	0	20
13	APCV	APCV	0	0	50

Randomized trial of 'intelligent' autotitrating ventilation versus standard pressure support non-invasive ventilation: Impact on adherence and physiological outcomes

JULIA L. KELLY,* JAY JAYE,* RACHEL E. PICKERSGILL, MICHELLE CHATWIN, MARY J. MORRELL AND ANITA K. SIMONDS *Respirology* (2014) 19, 596–603

7/18 patients NM

 Table 2
 Ventilator output and adherence to therapy following treatment with iVAPS and standard PS non-invasive ventilation

			Median difference between treatments	
	iVAPS	Standard PS	(95% CI)	Р
Ventilator settings ($n = 18$)				
PS minimum and maximum boundaries (iVAPS) (cmH ₂ O)	5.0 (5.0–5.0)–17.5 (15.0–18.0)	n/a	n/a	n/a
PS (standard PS) (cmH ₂ O)	n/a	10.0 (9.0–11.4)	n/a	n/a
EPAP (cmH₂O)	7.8 (6.0–9.0)	7.3 (6.0–9.0)	0 (0 to 1)	0.77
RR (bpm)	16.5 (14.0–21.0)	12.0 (12.0–13.0)	4.7 (2.3 to 7.3)	0.001
Target Va (I/min)	4.9 (4.1–6.1)	n/a	n/a	n/a
Ventilator output (<i>n</i> = 16)				
PS delivered median (cmH ₂ O) [‡]	8.3 (5.6–10.4)	10.0 (9.0–11.4)	-2.2 (-4.5 to 0.3)	0.001
Median leak (I/min)—vent	6.5 (3.5–26)	3.6 (0.2–9.6)	3.5 (–2.5 to 9.6)	0.23
Median tidal volume (mL)	421 (321–521)	400 (300–575)	-10 (-54 to 23)	0.47
Median minute ventilation (I/min)	6.8 (5.3–8.3)	6.2 (5.4–9.4)	-0.2 (-1.2 to 0.5)	0.50
Median RR (bpm)	16.7 (13.2–18.4)	15.5 (13.5–17.0)	0.3 (–0.7 to 2.2)	0.41
Adherence $(n = 17)$				
Mean NIV usage time (hh:mm/day)	5:40 (4:42-6:49)	4:20 (2:27-6:17)	01:04 (00:27 to 1:44)	0.004
% days used in study	91 (64–98)	92 (70–99)	−1 (−15 to 7)	0.53
% days used ≥4/24	74 (49–92)	60 (27–85)	8 (–2 to 17)	0.1

No difference on PSG and nocturnal gas exchange

Intensive Care Med DOI 10.1007/s00134-009-1408-5

ORIGINAL

Carbon dioxide monitoring during long-term noninvasive respiratory support in children

Guillaume Aubertin Emmanuelle Cohen

Rebeca Paiva Uros Krivec Annick Clément Brigitte Fauroux

Table 1 Characteristics of the patients

	n = 50
Age (years) Male/Female Drimory disease	8.5 ± 5.2 29/21
Neuromuscular disease	23
Lung disease Upper airway obstruction Duration of noninvasive respiratory support (months) Ventilatory mode	$\begin{array}{c} 2\\25\\24\pm 20\end{array}$
AC/VT PS	21 19
CPAP Nasal mask Industrial Custom made	10 25 25

1
\sim
140
-6
0
ъĘ
013
s0 s0
$\frac{1}{2}$
2 <u>0</u>
10.
sus
DO

Carbon dioxide monitoring during long-term noninvasive respiratory support in children

Guillaume Aubertin Emmanuelle Cohen Annick Clément Brigitte Fauroux

Rebeca Paiva Uros Krivec Table 2 Results of the nocturnal recording by the combined PtcCO₂/SpO₂ monitor

	Normal	Abnormal	Total number
	PtcCO ₂	PtcCO ₂	of patients
	recording	recording	N = 50
SpO ₂ cut off of 90%	⁹ /06		
$SpO_2 > 90\%$	28 (56%)	21 (42%)	49 (98%)
$SpO_2 < 90\%$	1(2%)	0 (0%)	1(2%)
SpO, cut off of 92%	12%	8	22 57
$SpO_2 > 92\%$	28 (46%)	18 (36%)	46 (92%)
$SpO_{2} < 92\%$	3 (6%)	1(2%)	4 (8%)
SpO ₂ cut off of 95%	15%	6	
$SpO_2 > 95\%$	18 (36%)	12 (24%)	30 (60%)
$SpO_{2} < 95\%$	13 (26%)	7 (14%)	20 (40%)

Normal daytime blood gases and normal nocturnal SpO₂ do not exclude nocturnal hypercapnia

Daytime PaCO ₂	Patients with nocturnal PtcCO ₂ < 50 mmHg n=29 (%)	Patients with nocturnal PtcCO ₂ > 50 mmHg n=21 (%)
PaCO ₂ < 45 mmHg	29 (48%)	<mark>18</mark> (36%)
PaCO ₂ ≥ 45 mmHg	0 (0%)	3 (6%)

Paiva et al. Intensive Care Med 2009:35:1068

	~
	õ
	14
	6
	8
	4
g	<u>n</u>
Ž	Q
ြ	\sim
ar	
\circ	8
<u>9</u>	.1
Sj.	10
ĝ	Ξ
nte	ğ
-	Ц

Carbon dioxide monitoring during long-term noninvasive respiratory support in children

Guillaume Aubertin Emmanuelle Cohen

Rebeca Paiva Uros Krivec Annick Clément Brigitte Fauroux

nocturnal hypercapnia during noninvasive positive pressure venti-Table 4 Interventions (not exclusive) in the patients who had lation (NPPV)

	Patients, $n = 21$
Change of the settings of	7
noninvasive respiratory support	
Change of interface	9
Addition of a chin strap	4
Addition of an abdominal girdle	ŝ
Change of NPPV mode	0
Adaptation of brace	2
Other intervention*	3
No change	ŝ
Tracheostomy	I

Nocturnal Oximetry and Transcutaneous Carbon Dioxide in Home-Ventilated Neuromuscular Patients

Julie Nardi MD, Hélène Prigent MD, Annie Adala, Mikaëlle Bohic, François Lebargy MD PhD, Maria-Antonia Quera-Salva MD PhD, David Orlikowski MD PhD, and Frédéric Lofaso MD PhD

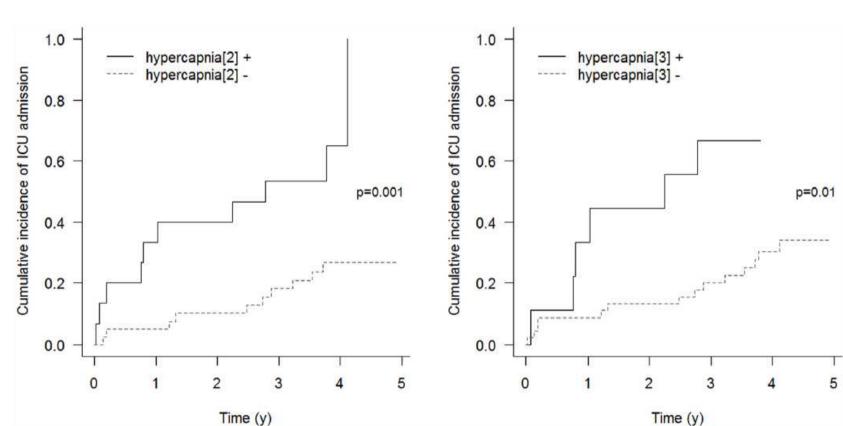
	Normal P _{teCO2} , no.*	Abnormal P _{teCO2} , no.*	Total, no.	Detect
S _{pO2} criterion 1				hypove
Normal	33	22	55	PtcCO
Abnormal	1	2	3	
Total	34	24	58	 SpC
S _{pO2} criterion 2				 Mea
Normal	33	17	50	< 90
Abnormal	1	7	8	
Total	34	24	58	 Mea
S _{pO2} criterion 3				< 90
Normal	30	15	45	
Abnormal	4	9	13	Ptc
Total	34	24	58	

Detection of alveolar hypoventilation by SpO_2 or with $PtcCO_2$:

- $SpO_2 \le 88\% > 5min$
- Mean SpO₂ < 90% or SpO₂
 < 90% ≥ 10% recording time
- Mean SpO₂ < 92% or SpO₂
 < 90% ≥ 10% recording time

Diagnosis of Alveolar Hypoventilation, no. (%)

• $PtcCO_2 max \ge 49mmHg$

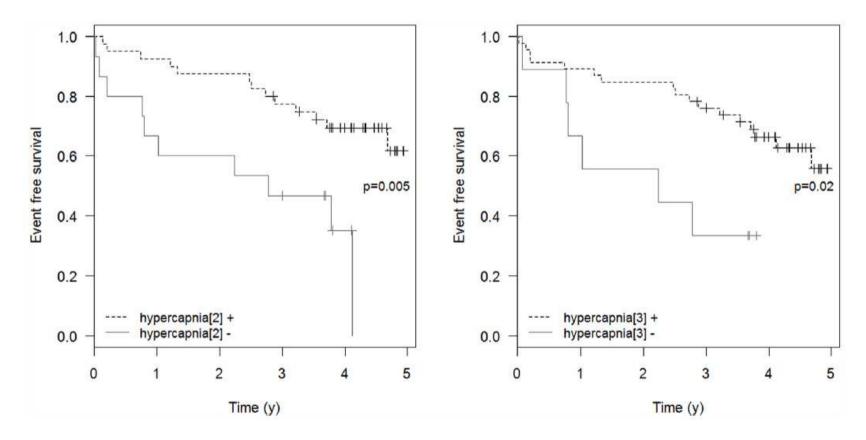

No effect of
ventilatory mode

3	, , , , ,
S _{pO2} criterion 1	3 (5.2)
S_{pO_2} criterion 2	8 (13.8)
S_{pO_2} criterion 3	13 (22.4)
P _{tcCO₂}	24 (41.4)
P_{tcCO_2} or S_{pO_2} criterion 2	25 (43.1)
P_{tcCO_2} or S_{pO_2} criterion 3	28 (48.3)

in Medicine original research published: 13 September 2016	TABLE 1 Characteristics of the study population.	N (%) or median [IQR]	Parameters Number of patients Pathology (N, %)	0	– MU1 5 (9.1%) – Other 11 (20.0%)	Age (years) 28 [25–36.5]	17	Follow-up (years) 4.0 [3.6–4.5] Deaths (N, %) 12 (21.8%)	ICU admissions (N, %) 20 (36.4%)	Respiratory parameters VC sitting (%pred) VC subine (%bred)	Mechanical ventilation40 (72.7%)Volumetric mode (N, %)28 (50.9%)Tracheostomy (N, %)28 (50.9%)Daily HMV duration (h)22.5 [9.0–24.0]
Prognostic Value of Initial Assessment of Residual Hypoventilation Using Nocturnal Capnography in Mechanically Ventilated Neuromuscular Patients: A 5-Year Follow-up Study	Adam Ogna ¹ *, Julie Nardl ² , Helene Prigent ² , Maria-Antonia Quera Salva ³ , Cendrine Chaffaut ⁴ , Laure Lamothe ¹ , Sylvie Chevret ⁴ , Djillali Annane ¹ , David Orlikowski ^{1,5} and Frederic Lofaso ^{2,3}				40 - 41.8		0 30 - 27.2 hvverma		20 -	10 - 12.7	Hypoventilation definition

Cumulative incidence of respiratory events requiring ICU admission

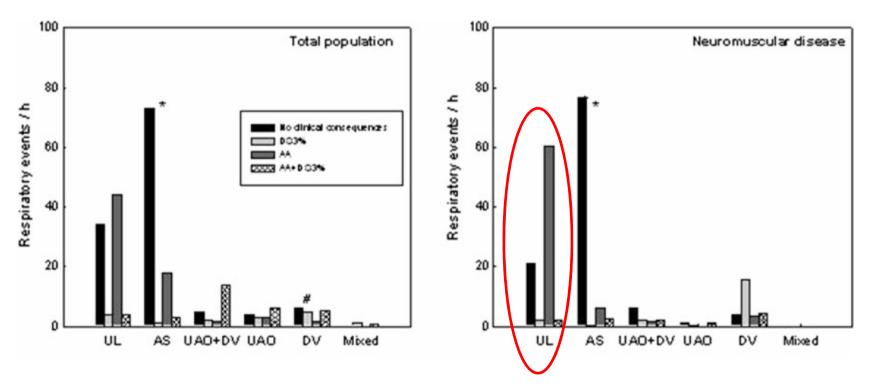
 $PtcCO_2 > 49 mmHg > 10\%$ total recording time



peak PtcCO₂ > 55 Hg

Event free survival: time to ICU admission or death

peak $PtcCO_2 > 55$ Hg



Which ventilatory mode for children with neuromuscular diseases ?

- Aim of NIV: guarantee an adequat (physiological) tidal volume with an optimal comfort
- NM patients are « easy » to ventilate: NIV replaces the respiratory muscles
 - adequat inspiratory trigger (sensitive) or back up rate
 physiological breathing rate
 - expiratory pressure = 0 ou minimal
- No ventilatory mode has proven its superiority
- In practice: S/T + volume guarantee + back up rate

Intensive Care Med DOI 10.1007/s00134-012- Valeria Caldarelli Jean Christian Borel Sonia Khirani Adriana Ramirez Renato Cutrera Jean-Louis Pépin Brigitte Fauroux	Intensive Care Med DOI 10.1007/s00134-012-2806-7 Valeria Caldarelli Jean Christian Borel Sonia Khirani Adriana Ramirez Renato Cutrera Jean-Louis Pépin Brigitte Fauroux		PEDIATRIC ORIGINAL Polygraphic respira with noninvasive ve description, preval consequences	PEDIATRIC ORIGINAL Polygraphic respiratory events during sleep with noninvasive ventilation in children: description, prevalence, and clinical consequences	nts during in childro 1 clinical	s sleep en:
Table 2 Descripti event (mean ± SE	ion of the respirate () and number of	Table 2 Description of the respiratory events during a polygraphy r event (mean \pm SD) and number of subjects with the single events	lygraphy recordi gle events	Table 2 Description of the respiratory events during a polygraphy recording: percentage of recording time spent with a single respiratory event (mean \pm SD) and number of subjects with the single events	me spent with a si	ingle respiratory
7	Unintentional leaks	Patient-ventilator asynchronies	Decrease in ventilatory drive	Upper airway obstruction with decrease in ventilatory drive	Upper airway obstruction	Mixed events
NM disease (n = 13) Lung disease (n = 11) OSAS (n = 15) Total population (n = 39)	$31 \pm 38 \% (n = 7) (n = 7) 37 \pm 41 \% (n = 8) 17 \pm 31 \% (n = 6) 27 \pm 36 \% (n = 21) (n = 21)$	$38 \pm 46 \% (n = 9)$ $50 \pm 39 \% (n = 10)$ $11 \pm 24 \% (n = 6)$ $33 \pm 40 \% (n = 25)$	$8 \pm 16 \% (n = 6)4 \pm 8 \% (n = 5)17 \pm 33 \% (n = 10)10 \pm 23 \% (n = 21)$	$11 \pm 23 \% (n = 5)$ $8 \pm 12 \% (n = 5)$ (n = 5) (n = 7) $11 \pm 28 \% (n = 17)$ (n = 17)	$4 \pm 7 \% \\ (n = 6) \\ 16 \pm 18 \% \\ (n = 7) \\ 16 \pm 25 \% \\ (n = 9) \\ 12 \pm 10 \% \\ (n = 22)$	$\begin{array}{c} 0 \pm 0 \ \% \\ (n = 0) \\ 0.1 \pm 0.1 \ \% \\ (n = 1) \\ 0 \pm 26 \ \% \\ (n = 8) \\ 3 \pm 16 \ \% \\ (n = 9) \end{array}$

Valeria Caldarelli Jean Christian Borel Sonia Khirani Adriana Ramirez Renato Cutrera Jean-Louis Pépin Brigitte Fauroux Polygraphic respiratory events during sleep with noninvasive ventilation in children: description, prevalence, and clinical consequences

Non intentional leaks are associated with autonomic arousals

Conclusion

- Outbreak of « new » ventilatory modes
 - lack of harmonisation of definitions ++
 - none has proven its superiority
- Primary aim
 - guarantee a physiological tidal volume with maximal comfort
- Priorities > ventilatory mode
 - for the patient
 - interface and headgear ++
 - ergonomy of the ventilator: weight, encumbrance, humidification
 - possibility of different modes (mouthpiece ventilation)
 - for the medical staff
 - easiness and accuracy of in-built software
 - integrated SpO₂ monitoring (PtcCO₂?)

Acknowledgements

